
Scientific Visualization, 2020, volume 12, number 3, pages 119 - 136, DOI: 10.26583/sv.12.3.11 

Visualization of interference pictures of 3D scenes including 

optically isotropic transparent objects 
 

V.A. Debelov1, L.F. Vasilieva2 

 
Institute of Computational Mathematics and Mathematical Geophysics SB RAS 

1 ORCID: 0000-0002-7577-4700, debelov@oapmg.sscc.ru 
2 ORCID: 0000-0001-7278-8800, vaslud@gmail.com 

  
Abstract 
To date, only few papers are available on the calculation of interference pictures, even for 

scenes with objects specified by optically isotropic materials. Major attention has been given 
only to some questions arising in the development of renderers. In this paper, we propose 
some solutions to the following problems of rendering: a) representation of a ray in render-
ing, that is, information about the ray which allows taking into account interference in the 
calculations; b) expansion of the concept of scene object material; and с) estimation of ray in-
tensity on an image surface. The main purpose is to describe the peculiarities of spectral ren-
dering when calculating interference effects in scenes with optically isotropic objects to be 
taken into account in the development of corresponding renderers, rather than the develop-
ment of any specific renderer. 

As an algorithm for interference calculation in an isotropic medium, we consider a direct 
simulation: tracing by rays of linear polarized light from a source to an image plane. 

The main point of the approach is that no special interfering objects such as thin films, 
soap bubbles, etc. are used in a scene. Images are calculated with a spectral representation of 
light and materials of the scene objects, but not on the basis of an RGB model. Interference is 
calculated at a scene point corresponding to a pixel of the image plane where coherent rays 
may come along unpredictable trajectories, in particular, along trajectories passing through 
some known interfering objects. 

  
Keywords: interference, linear polarization, optically isotropic transparent objects, pho-

torealistic spectral rendering, tracing of linear polarized rays, optical path, ray intensity esti-
mate in a pixel. 

 

1. Introduction 
Scientific visualization is finding increasing use in various fields of research. The range of 
problems where visualization is important is very wide: from physical processes based on 
physically justified mathematical models [1] to algorithm debugging [2]. Scientific visuali-
zation is based on many achievements in virtual and augmented reality systems. Any new 
functionality of virtual reality systems finds immediate use in scientific visualization, and 
some of its new functions are initiated by the requirements of scientific visualization. Ow-
ing to the widespread use of virtual and augmented reality systems, there are opportunities 
to have more realistic versions of computer-synthesized pictures and more realistic details. 
Visualization in such systems is performed by rendering programs which calculate images 
based on computer descriptions of virtual environments or scenes. Therefore, the virtual 
reality systems can employ only the capabilities provided by achievements in photorealistic 
computer graphics. 
The various fields of computer graphics mutually enrich each other; for instance, a scien-
tific visualization of tsunami and earthquake maps based on an approach to light interfer-
ence visualization was proposed in [3].  
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One of the main problems of photorealistic computer graphics is to obtain (calculate, ren-
der) images of virtual computer 3D scenes by a virtual camera [4]. Here a virtual scene is a 
computer representation or a model of a real scene with the degree of detail, geometry, and 
optical materials for which the renderer is designed. Also, a virtual camera is a computer 
model of an image-recording device: a camera, a scanner, or a human eye. A camera is an 
integral part of any renderer construction. If a renderer construction does not take into ac-
count some peculiarities of the interaction of light with objects, the calculated image will 
not show them. Photorealistic computer graphics (as indicated in the name) is primarily 
used to calculate images of virtual scenes which are comparable to photographs of real 
analogs of these scenes. This is done by fully taking into account the details of physical 
laws of interaction of light with the material of the scene objects. Such details include in-
terference, which often takes place in real objects, for instance, in iridescent spots of petrol 
on puddles [5]. 
The phenomenon of interference has not been given sufficient attention in computer 
graphics for the following reason: only coherent light rays can interfere. In our opinion, in 
the ordinary 3D scenes the light arriving at a scene point in different ways is, as a rule, in-
coherent. According to paper [6], if the illumination of an object of observation is not due 
to direct sunlight, but due to light scattered by surrounding objects or clouds, the individu-
al points of these objects can be considered sources of incoherent waves (the size of their 
coherence domain is 0,06 mm). Thus, it has turned out that only calculations of energy for 
individual rays are sufficient, without taking into account the phase of electromagnetic os-
cillations (the wave nature of light). At the scene point being investigated only the ray en-
ergies are added, and no phase shifts of the light waves coming to the scene point with dif-
ferent rays must be taken into account. 
There are more complicated manifestations of interference, namely, interference pictures 
of anisotropic crystals [7, 8], which can be obtained by a conventional camera even in a 
very simple scene with a transparent anisotropic mineral (for instance, calcite or quartz) 
between the polarizers in a polariscope [9]. In the present paper, scenes with optically ani-
sotropic objects are not considered. 
Here we consider a direct simulation of the propagation of linear polarized light rays in a 
scene with optically isotropic objects and media, that is, a calculation of the propagation of 
light rays from a source to an image plane. An important characteristic of the algorithm is 
that the tracing is performed by linear polarized rays of "zero thickness" [10], that is, by 
rays used in traditional renderers (in contrast, for instance, to Gaussian solid beams [10]). 
Some issues are considered with a description of computer experiments in which images 
are calculated by taking into account the interference of simplest scenes containing trans-
parent optically isotropic objects. Special attention is given to some peculiarities of the cal-
culation of interference effects to be taken into account in the development of correspond-
ing renderers. 
In the present paper, diffraction is not considered. It plays an important role, but requires 
time-consuming calculations, although this phenomenon is not always visible in ordinary 
scenes.  
Few works have been published on the calculation of interference pictures, even for scenes 
with objects specified by optically isotropic materials. Major attention has been given only 
to some questions arising in the development of renderers. In the present paper, we pro-
pose some solutions to the following questions: 

 Representation of a ray in rendering, that is, information about the ray which allows 
taking into account interference in the calculations.  

 Expansion of the concept of scene object material. 

 Ray intensity estimation on an image surface. 
An attempt is made to gather the basic technical information and present it in sufficient 
detail. The goal of the authors is to describe the peculiarities of calculation of the interfer-



ence effects to be taken into account in the development of appropriate renderers, but not 
the development of any specific renderer. 
In Section 2, some of the available papers on visualization are considered. Section 3 pro-
vides a brief description of light polarization and the calculation of intensity in the case of 
two-ray and multi-ray interference. Some proposals are made on modifying the concept of 
object material and the information load of a tracing ray to provide flexible programming 
of scene rendering in the presence of interference. Section 4 is devoted to numerical exper-
iments based on classical scenes: Young's experiment and amplitude division [5]. In Sec-
tion 5, an approach is proposed to the resulting intensity calculation in an image plane pix-
el using the wave nature of light. 

2. Previous work 
Interference pictures have been much studied in the scientific, educational, and technical 
literature devoted to optics (see, for instance, [5–7, 11], and many others). All such studies 
do not consider computer graphics and describe the physics of some observed pictures de-
pending on the material of the sample and its parameters. Interference pictures are a tool 
for identifying the material (mineral), evaluating the quality of a product (for instance, 
sugar), etc. Among the most well-studied objects are well-polished plane-parallel plates 
and wedges. Optical devices, such as interferometers [5, 11, 12] and others, have been stud-
ied in detail, since they are of great practical importance. Thin films (such as spots of petrol 
on water and paint coatings) have also been studied in detail. The calculations are mainly 
made in a small neighborhood of the interaction of a ray with a plate or a thin film. The 
way in which an interference picture is obtained is usually not clearly formalized. It is only 
stated that the interference picture is in the focal plane of a lens or in an eye at infinity (see 
[5, 6], and others). 
The available programs of photorealistic rendering allow obtaining images for scenes in 
which the optical properties called materials (coefficients of reflection, refraction, etc.) of 
objects and sources are specified with spectra in a visible wavelength range from 380 to 
780 nm. The phenomenon of optical dispersion, that is, the phenomenon in which the re-
fraction angle of a light ray depends on the wavelength (the refractive index of the medi-
um), can be taken into account by using so-called spectral rendering [4, 13].  Hence, New-
ton’s prism experiment on white light decomposition into its spectrum can be pro-
grammed. This has been demonstrated by many modern renderers (for instance, Maxwell 
render [14]). Spectral rendering has made it possible to calculate physically correct images 
of diamonds, rhinestones, glass objects, etc.  
In photorealistic computer graphics, attention was naturally given to the phenomenon of 
interference, which often manifests itself in everyday life.  Let us consider the most well-
known approaches. 
First of all, there appeared papers in which interference in thin films was calculated on the 
basis of analytical solutions, mathematical models, and formulas available in the physical 
literature. One of the first works of this type was presented by Diaz [15]. A series of papers 
is devoted to simulation of interference on thin films (see, for instance, the paper of Glass-
ner [16]). With given parameters, the required image for a scene consisting of two or three 
soap bubbles was calculated by corresponding formulas. Unfortunately, optical dispersion 
was not taken into account, since the same refractive index was used for all wavelengths. In 
fact, in this case computer graphics was used on the level of a pixel, line, or symbol. Vari-
ous specialized systems or simulators can be constructed in this way, but this is not photo-
realistic computer graphics proper. 
In relation to computer graphics and interference calculation, one should mention paper 
[17], in which it was proposed to render by tracing polarized rays and take into account the 
Fresnel decomposition [5, 6] when calculating ray-surface interactions. A special scene ob-
ject (a thin film, a varnish or paint layer) was identified. The authors proposed a para-



metrized geometrical and optical model of this object with interference effects to calculate 
an analog of the function of reflection from the object depending on the angle of the inci-
dent ray with the normal. All interactions with such objects were made by using this reflec-
tion function. In their numerical experiments the authors used the same refractive index 
for the material of the interfering layer; that is, optical dispersion was neglected. 
The methods of computer graphics were most clearly presented and implemented in pa-
pers [18, 19], in which images with interference in thin films were calculated. In their sub-
sequent paper [20] the authors also used a polarized light decomposition into parallel and 
perpendicular components and the Fresnel formulas. 
Thus, according to these papers, the modification of a traditional renderer (as a rule, an 
RGB renderer) is, in simple form, as follows: a) a ray of a typical form (for example, in the 
form of an RGB triple) falls on an interfering layer or an object; b) the energy transferred 
by the ray is converted to spectral form; c) interference is calculated inside the object: the 
outgoing ray is calculated in spectral form; d) the outgoing ray is transformed back from 
spectral form to RGB; e) the RGB ray continues to move in the scene. At the second stage 
(b), analytical solutions for thin films [18–20] or special reflection functions are used [17]. 
Paper [20] describes a method for embedding interfering objects (here films) into Pixar’s 
RenderMan [21], a renderer which is based on an RGB light ray representation. 
Many papers are mainly devoted to simulating the geometry of soap bubbles and speeding 
up the calculation of pictures, but pay less attention to exact calculation of interference. 
Most likely, the purpose of such works is to obtain rainbow colors close to natural ones (for 
instance, textures, as in [22]). 
We have discussed some representative works on the phenomenon of interference. For 
more comprehensive lists of literature the reader is referred to reviews in these papers. 
Note the following typical peculiarities of these works: 

  As a rule, a traditional representation of a ray is used, except when it is “inside” an in-
terfering scene object. That is, in the scene itself the ray has only information about the 
intensities of the RGB color components. 

  It is not clear how the optical characteristics of an interfering object are specified, that 
is, no specifications of the material are given. 

  In the above-mentioned works nothing is said about the camera or the image plane. 
As regards the rendering of the entire scene, a ray is transmitted in a specific format to 
the module that traces rays inside the object, perhaps for calculating the interference, 
and receives the rays in the same format on the way out. 

 Optical dispersion is often neglected in the numerical experiments. 

 In most cases, obtaining of rainbow colors is guaranteed, which makes the image real-
istic but not physically correct. 

There is an absolutely different approach based on physical optics, that is, taking into ac-
count the wave nature of light. In paper [10], it is proposed to perform tracing of not tradi-
tional rays of zero thickness, but a complex tracing based on Gaussian spherical waves or 
Gaussian beams. Only paraxial rays are used, which is often sufficient in the development 
of models of microscopes, lenses, etc. To date, many rendering algorithms have been pro-
posed (see [4]) which, instead of a mathematical beam of zero thickness, use solid objects 
for tracing: a cone, a beam of rays, or a pencil (a beam with a central ray).  None of them 
have been universally adopted for realistic and fast rendering of complex scenes. The pre-
sent authors think that it is not realistic to construct an entire renderer on the basis of 
Gaussian beams even in the near future, despite the fast development of computer tech-
nology: It will be expensive and take a long time. However, it is quite feasible for optical 
systems, when a small number of elements is centered along a single axis. 
In the present paper, an approach to modernizing the existing photorealistic spectral ren-
dering is proposed for a physically correct simulation of the phenomenon of light interfer-
ence. In general, interference cannot be taken into account without considering light polar-
ization. Therefore, we will have to modernize the representation of a ray of light by intro-



ducing parameters of the state of its polarization. On the other hand, a more accurate spec-
ification of the object material as a set of its optical properties is needed. 
An extensive review of works on rendering by a ray of polarized light and rendering using a 
polarized ray of optically anisotropic transparent materials can be found in [23]. Algo-
rithms of interaction of linear polarized light with transparent optically isotropic and ani-
sotropic objects are considered in [2, 24 – 27].  
Various aspects of rendering that can be used to calculate interference pictures are covered 
in a number of conference talks: on the development of a mathematical model of a polar-
ized ray [22, 28, 29]; and on the interaction of polarized light with isotropic lenses [30]. 
Without polarization, only Young’s experiment on division of wave front [5] or similar ex-
periments can be simulated in a physically correct way, when light upon its passage from a 
source to a screen (eye) is not reflected and refracted on the scene surfaces (since they are 
absent). Hence, in this case light is not polarized even partially. 
Reliability and physical correctness of the algorithms. The algorithms for visualization of 
interference effects are mostly based on a correct application of physical laws and formu-
las. For the photorealistic rendering algorithms in computer graphics, an approach to veri-
fying the reliability and physical correctness of the rendering algorithms was proposed in 
the CornellBox project [31]. Two “identical” scenes were prepared: a very simple real scene 
consisting of several cubes having diffuse colors and a virtual computer scene. A photo of 
the scene was compared pixel by pixel with an image synthesized by a virtual camera based 
on a calculation using a radiosity method.  It was demonstrated in papers [26, 32] that the 
pixel-by-pixel comparison of a photograph and results of an algorithm for interaction of 
rays of light with transparent anisotropic objects, using a convex calcite hexagon as an ex-
ample, is reliable.  Note that (visual) reliability can be confirmed by an expert when a pho-
to and a synthesized image are evaluated by an observer (see, for instance, paper [25] in 
which birefringence is simulated).  
In the above algorithms for the simulation and calculation of interference, no similar tests 
have been made, and it is not clear whether the calculated images are obtained due to in-
terference or optical dispersion. The authors of paper [33] note that diffraction (CD discs), 
interference (oil spots, films), dispersion (light decomposition by a prism), scattering 
(rainbow), that is, four different optical mechanisms can be sources of rainbow colors. 
Moreover, the observer might think that the image under inspection was calculated with-
out possible interference effects; for instance, this might be a result of calculation of caus-
tics, as in [34]. In other words, before demonstrating a synthesized image to the reader, he 
should be prepared by describing the details of the scene and eliminating the influence of 
optical dispersion and other phenomena. In our opinion, the most realistic and reliable 
demonstrations of interference are the results of calculations of images for scenes with 
monochrome sources. 

3. Light polarization and interference 
Note that, in contrast to geometric optics, in wave optics the term “ray” is used for brevity, 
to denote the direction of propagation of light energy. In what follows, this term will be 
used without quotation marks. 

3.1 Polarization 
Light ray polarization is a characteristic that describes the behavior of the electric field vec-
tor in a plane perpendicular to the direction of ray propagation. Polarization can be linear, 
circular or, in the general case, elliptical [5]. Every individual electromagnetic wave is 
completely polarized. A ray means a quasi-monochrome light ray as a totality of waves 
propagating along a straight line and having the same wavelength [5]. It can be fully polar-
ized, partially polarized, or unpolarized, depending on the degree of correlation of oscilla-
tions of individual waves in the ray. 



The following peculiarities are important for the calculations (according to [5]): 

 A wave of natural (unpolarized) light of intensity I  is equivalent to two independent 

linear polarized waves whose intensity is  equal to 
2

I  and with electric vectors oscil-

lating in two mutually perpendicular planes that are normal to the direction of propa-
gation.  

 Partially polarized light can be represented as the sum of fully unpolarized and fully 
polarized parts that are independent of each other.  

 Two waves that are polarized in mutually perpendicular planes do not interfere. 

  Rays with circular and elliptical polarization can be represented as a combination of 
linear polarized rays. Then, without loss of generality, calculations with fully polarized 
rays (and only with linear polarized rays) can be made. 

There are several mathematical constructions (approaches) for describing and calculating 
the state of polarization: Jones vectors and Jones matrices, Stokes vectors and Mueller ma-
trices, coherence matrices and their modifiers (see details in [5, 26, 35, 36]). In papers [2, 
26, 27], polarization was successfully represented on the basis of coherence matrices. This 
representation makes it possible to describe natural (unpolarized), partially polarized, and 
fully polarized light, which was sufficient for the problems under consideration.  Coherence 
matrices (like the other representations) do not keep the phase of an electromagnetic os-
cillation or the optical path of a ray. Therefore, none of the representations of polarization 
is preferable to the others. 
Note that in any representation of polarization, when a ray is incident on a surface, there 
are clear procedures of calculating the parameters of reflected and refracted rays. 

3.2 Spectral rendering 

Assume that the renderer to be modified calculates images in the spectral rendering mode 
[4, 13]. In the present paper, it does not matter what kind of ray tracing is used in the ren-
derer for calculations: forward, reverse, recursive of the Whitted type [37], with lightmaps 
or with photon maps. In any case, energy is collected starting from the source. However, 
when maps are used, they should be considered as secondary sources along with the origi-
nal ones, since they do not contain any information on coherence, or maps should also be 
modernized. 
Light is a totality of waves from some (typically continuous) interval of electromagnetic 

wavelengths and is represented by a spectrum 𝑆𝑐(𝜆) which is, in fact, a curve. There are 
cases when the spectrum curve has clear peaks; often they are considered separately. In 
spectral rendering, first a discretization is performed and a discrete spectrum is formed 

that approximates, with the needed accuracy, the curve 𝑆𝑐(𝜆) as a set of k  samples 

{ }1 1, , ..., ,k kSd w A w A= < > < > . Here 
iA  is the amplitude of oscillations of the elec-

tric component for a wave of length 
iw . The same set includes peaks, if any. This paper 

considers objects, which do not change the length of a light wave when interacting with it, 
like the vast majority of real-world objects. Of course, some materials, for instance, fluo-
rescent ones, are not considered. For these, it will be necessary to refine the mathematical 
model.  
In what follows, all formulas (unless otherwise specified) are considered for monochro-

matic light with wavelength in vacuum 𝜆. 

The entire process of calculation is performed for each wavelength from the set Sd  sepa-

rately, thus forming k  monochrome images. At the end of the process, the resulting image 
is formed on the basis of individual monochrome ones – the stage of color conversion from 
the spectrum to RGB (tone reproduction) [13, 38]. 



3.3 Coherence 

Only coherent rays can interfere. The intensity at the point where these rays meet in the 
scene (on the image plane) is affected by the path difference (the difference of the optical 
paths). Following [5], it is assumed here that rays are coherent if they were initially emit-
ted by a point (a small neighborhood) of any of the scene sources, and then reached this 
point in different ways. 
In paper [39], some methods for obtaining coherent waves to perform real experiments 
are presented. Specifically, there are two ways to obtain waves for implementing interfer-
ence in optics: 1) division of wave amplitude, and 2) division of wave front. In the numeri-
cal experiments, these methods will be considered on the basis of some classical experi-
ments. 
It is noted in papers [5, 6] that there is no interference picture if the path difference ex-
ceeds the coherence length. If we observe interference pictures, in such a real scene this 
length is not exceeded. Nevertheless, this rule should not be neglected, but the user will 
have an opportunity to control the parameter of coherence length – which is specific for 
each source.  
For greater flexibility in the development of virtual 3D scenes, we propose to control ray 
coherence in the following way: 

 Each ray has an attribute of optical path and an attribute of coherence. The latter de-
fines a unique point (neighborhood) of the source that generated this ray. It can be 
numerical or mnemonic. If two rays have the same values of the attribute of coherence 
(source), they are coherent. Let the zero value mean that coherence is not defined, that 
is, the ray is not coherent with any other ray. 

 Each source has an attribute of coherence length. If a ray generated by this source has 
passed more than a specified value, it will be “incoherent” in its further propagation in 
the scene for all other rays, that is, the attribute of coherence is set to zero. 

 If a ray is refracted or reflected at its interaction with the scene surface, the user can 
control the coherence of generated (reflected, refracted) rays, both at the same time or 
each separately: a) they inherit the value of the attribute; b) lose coherence. For each 
scene surface, specific rules can be set. This means that the number of attributes in the 
concept of object material should be increased by adding the above-mentioned data 
control tools associated with the ray. 

Note: if a source originally generated unpolarized light, two rays are generated instead of 
one (see above), and each of them has its own unique attribute of coherence, since they are 
independent. 

3.4 Interference of two coherent rays 

Let two waves emitted by a single source come to a scene point P , and let them be linear 

polarized and coherent. Their electric vectors are 
1E  and 

2E , respectively. These waves 

can be written as 𝑬 =  𝑬0𝑒𝑖𝜙, where 𝜙 is the phase, and 𝑬0 is the vector amplitude. The 
electrical component of an electromagnetic wave is important for photography, since the 
incoming intensity is proportional to the squared amplitude of this wave. Therefore, we 

will consider only this component, 𝐼 = 𝑐 ∙ 𝑬0
2, where c  is a coefficient. In what follows, we 

will not distinguish between the intensity and the squared amplitude, since this will not 
greatly change the description and calculation algorithms. The resulting electric field [5] at 
the scene point under consideration is the vector 

𝑬∑ = 𝑬1 + 𝑬2, (1) 

Hence, 

𝑬∑
2 = 𝑬1

2 + 𝑬2
2 + 2𝑬1𝑬2. (2) 

The total intensity I  is expressed in terms of the intensities of both waves as 



1 2 12I I I J= + +
, (3) 

where the last term is interference. 
In the literature (see [5, 11, and others], the focus is first on the most important practical 

case when both waves propagate almost along the same straight line or reach the point P
of interest from close directions. In paper [17], their polarization planes are assumed to co-

incide. In these conditions the intensity at point P  is found by the formula  

𝐼 =  𝐼1 + 𝐼2 + 2√𝐼1𝐼2 cos 𝛿, (4) 

where 𝛿 is the phase difference of the two electric fields at P . For simplicity, we assume 
that both rays have left the source with zero phase. Let a ray (more precisely, a path) pass 

from the source to the point a distance of length 
1L  in a medium with a refractive index 

1n

, ... , and a distance of length 
kL  in a medium with refractive index 

kn . Then the optical 

path of the ray is calculated by the formula 𝑠 =  ∑ 𝑛𝑖𝐿𝑖
𝑘
𝑖=1 , and the phase changed by 

𝜙 = 2𝜋𝑠 / 𝜆. The two rays have passed optical paths 𝑠1 and 𝑠2. Then the phase difference 

due to the difference in the optical paths is 𝛿 =
2𝜋

𝜆
(𝑠1 − 𝑠2). 

3.5 Interference of several coherent rays 
Consider the case when more than two rays meet at a point. Then we use the initial formu-
la (1) to determine the resulting value of the electric field vector. Rays converging at a point 
may represent some number q  of groups of mutually coherent rays. Then the resulting 

field may be represented as the sum q  of independent (mutually incoherent) fields:  

𝑬∑ = 𝑬1 + 𝑬2 + ⋯ +  𝑬𝑞 , (5) 

and the sought-for intensity 

𝑬∑
2 = 𝑬1

2 + 𝑬2
2 + ⋯ + 𝑬𝑞

2   

or 

𝐼∑ = 𝐼1 + 𝐼2 + ⋯ +  𝐼𝑞 . (6) 

Let us calculate the individual intensity terms — the intensities contributed by the individ-

ual groups of coherent rays. Let there be t  rays in a group 1..g q= . Here the phase of the 

incoming wave begins to play a role. In the case of arbitrary scenes, the vectors 

, 1..gj j t=E  may have an arbitrary direction. Therefore, it does not make sense to remove 

the brackets, as in formula (2). In paper [40], a data structure was created to group rays 
arriving at a point from almost the same directions. Then the sum of pairwise interference 
terms within these groups was calculated. In this case, the interference of coherent rays 
coming from different directions could be lost. In paper [17], consideration was restricted 
to a case when interfering rays come from identical directions and have identical polariza-
tion planes, that is, formula (4) was used. In [18, 19] the calculations were based on the 
amplitude division algorithm [5] and formula (4). 

In our approach, it is proposed first to directly calculate the field gE of this group, and 

then calculate the intensity by simply squaring the amplitude, according to the definition. 

Recall that the j-th ray comes to point P with a value of the vector 𝑬𝑗 = 𝑬𝑗0𝑒𝑖𝜙𝑗 , where 𝜙𝑗  

is the phase, which is calculated using the optical path passed by the ray according to the 
above algorithm. Then 

𝑬𝑔 = 𝑬10𝑒𝑖𝜙1 + 𝑬20𝑒𝑖𝜙2 + ⋯ + 𝑬𝑡0𝑒𝑖𝜙𝑡 . 

Note that each term here is a vector in space. Figure 1 shows the vector of the resulting 
electric field at different scene points where the same three coherent rays meet: on the left 



for point 𝑃1: 𝑬𝑔(𝑃1) = 𝑬10𝑒𝑖𝜙1(𝑃1) + 𝑬20𝑒𝑖𝜙2(𝑃1) + 𝑬30𝑒𝑖𝜙3(𝑃1), and on the right for 

point 𝑃2: 𝑬𝑔(𝑃2) = 𝑬10𝑒𝑖𝜙1(𝑃2) + 𝑬20𝑒𝑖𝜙2(𝑃2) + 𝑬30𝑒𝑖𝜙3(𝑃2). For simplicity, a plane 

case is shown. The field vectors of the different rays are denoted by solid arrows of differ-
ent colors, and the resulting vector is denoted by black color. An auxiliary construction for 
the addition of vectors is shown by dotted lines. The figure shows that the length of the re-
sulting vector can vary significantly from point to point and, hence, the intensity is the 
squared length. Similar constructions can be found in books [11, 41] in a different context: 
constructing diffraction pictures. 
 

 
Fig. 1. Calculation of the resulting electric field vector (black) at two scene points. 

3.6 Phase jumps at reflection 

In order to correctly calculate the current phase, information about the optical path is not 
sufficient. It is also necessary to consider the jumpwise phase changes in the reflection of 

light at the interface Γ between two transparent isotropic media with refractive indices 
1n  

and 
2n . According to [5, 18], in reflection from the medium with the larger refractive index 

the phase shifts by 𝜋: 

𝜙𝑛𝑒𝑤 = 𝜙𝑜𝑙𝑑 − 𝜋, 𝑖𝑓 𝑛1 <  𝑛2 (7) 

As a rule, this treatment is made when considering rays of unpolarized light. However, in 

what follows a subtler approach is considered. To describe the interaction of a ray with Γ, 
the Fresnel formulas are typically used (see [5, 6, 20, 30]). For this, for an incident ray of 

even polarized light the electric field vector 𝑬 in the general case is decomposed into two 

components: polarized perpendicularly to 𝑬⊥ and parallel to 𝑬∥ of the incidence plane. 

The incidence plane is determined by the incident ray and the normal to the surface. In the 
case of normal incidence, when these vectors are collinear, no decomposition into the 
components is made. 

Let a fully linear polarized ray with electric vector 𝑬 strike the interface between two 

transparent media. We use the following notation: 𝛼– angle of incidence, 𝛾 – angle of re-

fraction, 𝛽 – Brewster’s angle, 𝑡𝑔𝛽 = 𝑛2 / 𝑛1. Let us decompose 𝑬 into two components: 

𝑬 = 𝑬∥ +  𝑬⊥, one in the incidence plane and the other perpendicular to it. Similar de-

compositions are made for 𝑬𝑟 = 𝑬𝑟∥ + 𝑬𝑟⊥ of the reflected wave and 𝑬𝑡 = 𝑬𝑡∥ + 𝑬𝑡⊥ 

of the refracted wave. With the Fresnel formulas we find the following relations between 
the amplitudes of the incident, reflected, and refracted waves: 

𝐸𝑟⊥

𝐸⊥
= −

sin(𝛼 − 𝛾)

sin(𝛼 + 𝛾)
,

𝐸𝑡⊥

𝐸⊥
=

2 cos 𝑎 sin 𝛾

sin(𝛼 + 𝛾)
, 

𝐸𝑟∥

𝐸∥
=

tg(𝛼 − 𝛾)

tg(𝛼 + 𝛾)
,

𝐸𝑡∥

𝐸∥
=

2 cos 𝑎 sin 𝛾

sin(𝛼 + 𝛾) cos(𝛼 − 𝛾)
. 



In the case of normal incidence, there is no decomposition into the components, and the 
formulas are transformed as follows: 

1 2 1

1 2 1 2

2
,r tE n n E n

E n n E n n

-
= =

+ +
. 

Total internal reflection is a specially considered case. Here 

𝐸𝑟∥ = 𝐸∥, 𝐸𝑟⊥ = 𝐸⊥. 

Taking into account the angle of incidence 𝛼 and Brewster’s angle 𝛽 at the boundary Γ, the 
phases of reflected and refracted rays are corrected according to the following rules: 

 Under refraction, the incident and refracted rays are co-phased. 

 𝑬⊥: under reflection, the phase changes to −𝜋, if 𝑛1 <  𝑛2.                  (8) 

 𝑬∥: under reflection, the phase changes to −𝜋, if  

𝑛1 <  𝑛2  ∧  𝛼 <  𝛽 ∨ 𝑛1 > 𝑛2 ∧  𝛼 >  𝛽. (9) 

For the case of total internal reflection, more complex expressions for the phase jump are 
used [42]: 

𝛿∥ = 2𝑎𝑟𝑐𝑡𝑔 (
√𝑠𝑖𝑛2𝛼 − 𝑛21

2

𝑛21
2  𝑐𝑜𝑠𝛼

) − 𝜋, 𝛿⊥ = 2𝑎𝑟𝑐𝑡𝑔 (
√𝑠𝑖𝑛2𝛼 − 𝑛21

2

𝑐𝑜𝑠𝛼
) 

Once the Fresnel formulas are applied, the resulting generated rays are formed by adding 
their coordinate components. 

3.7 Total informational load of linear polarized light tracing ray 

When calculating images, rays are traced from their sources. Let us consider a linear po-
larized light ray with attributes 

{ }0, , , ,R P Atr= dir X Y . 

Here the mathematical ray is { }0,P dir  and the corresponding right-handed coordinate 

system is { }, ,X Y dir , 
0P  is the ray origin, dir  is the direction, and Atr  is the set of at-

tributes. The coherence matrix of this ray is related to this coordinate system, that is, its 
polarization and intensity are specified. The ray strikes the scene surface and generates 
new (reflected and refracted) rays. In this implementation, we take a coordinate system 
such that the electric vector oscillations are along the X-axis. The following set of attrib-
utes is sufficient for calculating images taking into account interference: 

 𝜆 – light wavelength. It was mentioned in Section 3.2 that only monochrome rays are 
used for spectral rendering. 

 
idLight  – identifier of the ray-generating point light source or of the differential area 

of the areal source. The program can assign unique identifiers (numeric or text ones). 
Let the zero value mean that a given ray on its further path will not be coherent with 
any other ray. Two rays are coherent if their source identifiers are nonzero and coin-
cide. 

 
maxSC  – limiting coherence length. 

 hgM  – 2x2 coherence matrix. The intensity 𝐼(𝜆) is calculated with the matrix trace. 

 Op  – optical path from the source used to calculate the current phase of an electro-

magnetic wave. 

 ∑𝛿  – phase jump accumulated under reflections. 
The generated (reflected and refracted) rays inherit some of the attributes, or they are re-
calculated at the contact of the generating ray with the scene surface. 



To account for interference, the renderer can be modified as follows:  

 Divide all rays coming to a screen point into mutual coherence groups. 

 Determine the final phase and the electric field vector for each ray of each group. 

 Obtain the resulting vector for each group. 

 Add the squared lengths of the resulting vectors of the ray groups. 

 Calculate the intensity. 
Thus, all computational features of the interference accounting algorithm in a 3D scene 
with optically isotropic objects have been defined. Now let us consider numerical experi-
ments illustrating the above statements. 

4. Interference in a scene with isotropic objects: experi-
ments 

4.1 Young’s experiment  

Young’s experiment is an experiment with wavefront division [5]. A parallel ray of mono-
chromatic light strikes a screen A with a small hole. Passing through the hole, the light 

reaches a second screen B with two slits, 
1S  and 

2S , located at a distance d from each oth-

er. The coherent rays coming from each of the slits interfere on a third screen, C (image 

plane) located at a distance 𝑙 from B. Fig. 2 shows a scheme of the experiment. 
 

 
Fig. 2. Young’s experiment, illustration from [43]. 

 

Let us construct a 3D scene for tracing the rays and calculating the image on the screen C : 

a) monochrome coherent light sources 
1S  and 

2S  in the form of thin vertical parallel lines; 

b) screen C , on which the image is formed; 
1s  and 

2s  are the ray paths to point P . The 

refractive index of the medium is set equal to 1 and  ≫ 𝑑 , as required in [5]. 
The right image in Fig. 3 is calculated by formula (4) with the following parameters: 

𝜆 = 550𝑒−9; 𝑑 = 500 ∙  𝜆; 𝑙 = 1000 ∙ 𝑑. 
In fact, in the scene the light rays do not cross any boundaries. Hence, the phase correction 
rules at reflections need not be applied. 
 

  



Fig. 3. Photo of Young’s experiment from [5] (left), result of a numerical experiment from 
[28] (right). 

4.2 Amplitude division 
Another popular experiment demonstrating interference is that with amplitude division 
(the Fresnel method) [5]. In paper [28], a version of this experiment was simulated with 
the scene shown in Fig. 4 (left). A point source generates coherent monochrome rays of 
unpolarized light. A Shield prevents the rays from striking a screen (image), and the re-

flected ray 
0r  is shielded by the Shield. Only rays interacting with a plane-parallel trans-

parent plate fall on the screen. A target screen point P  is reached by two rays: 
1r , the ray 

reflected from the upper boundary of the plate, and 
2r , the ray reflected from its lower 

boundary.  In other words, the interference of 
1r  and 

2r  is calculated; their amplitudes are 

obtained by dividing the amplitudes of different initial rays from the source. However, 
they are coherent, since there is only one source, and the resulting images are physically 
correct. In this experiment no additional devices are needed to bring the interfering rays to 
one screen point. 
 

 
Fig. 4. Scene from [28] (left), scene corresponding to a popular description of the  

amplitude division experiment from [5] (right). 
 
In the literature, this experiment (see [5] and others) is often described for the scene 
shown in Fig. 4 (right). To bring the interfering rays to one point, a lens is added whose fo-

cal plane is the recording screen. The ray 
1r  used in [28] in this scene misses the lens and 

does not strike the screen.  
Let us perform a series of experiments. Figure 5 shows an image calculated in spectral ren-

dering by most of the existing renderers, since only the sum of intensities, 
1 2I I+ , coming 

with two rays (but not coherence) is taken into account. 
 



 
Fig. 5. Image calculation without coherence. 

 
In Fig. 6 (left), coherence is taken into account, formula (4) is used, and the phase differ-
ence is calculated only on the basis of the difference of the optical paths. Let us take into 

account the phase jump when ray 
1r  is reflected from a denser medium (Fig. 6, right). One 

can see that the picture has changed: the colored stripes seem to have shifted. 
 

  
Fig. 6. Coherence and phase difference taken into account only on the basis of the differ-

ence in optical paths, calculation by formula (4) (left); calculation taking into account 

phase jump 𝜋 under reflection (right). 
 
Let us calculate the image by the Fresnel formulas, with an unpolarized light ray repre-
sented as the sum of rays polarized parallel to the incidence plane and perpendicular to it, 

𝑅 = 𝑅∥ + 𝑅⊥, and use formulas (8) and (9). According to the theory, the intensity at 

point P  is calculated by adding up two intensities, 𝐼 = 𝐼∥ + 𝐼⊥, see Fig. 7 (right).  

The two images shown in Fig. 7 in an RGB format are as follows: the total number of pixels 
is 810000; the number of different pixels is 79041; the maximum difference (r+g+b) = 60 
at (12, 42); the maximum difference between the components (r | g | b) is 31 at (10, 49). 
That is, the difference is an almost black image. It turns out that in some cases the coarser 
model in Fig. 7 (left) gives a rather good image. Fig. 8 shows histogram stretching to see 
places corresponding to the maximum discrepancy. This discrepancy is, most likely, due to 



the fact that in Fig. 7 ( left) all rays were processed according to the rules for rays with per-

pendicular polarization 𝑅⊥, and the effect of Brewster’s angle on 𝑅∥ was not taken into ac-

count (see formula (9)). Note that the dark "parabolic" stripe in Fig. 8 is located in the vi-
cinity of Brewster’s angle. 
 

  
Fig. 7. Right image of Fig. 6 (left); image calculated on the basis of decomposition, 

𝑅 = 𝑅∥ + 𝑅⊥ (right). 

 

 
Fig. 8. Histogram stretching of the difference of images shown in Fig. 7. 

5. Conclusions  
In many experiments (as shown in the computer simulation of Young's experiment) and in 
the simulation of optical devices, the approach not taking into account Brewster’s angle is 
quite sufficient (see the above images), especially when the incidence angles are mostly 
near zero or reflection is ignored. Our experiments have also shown that when using the 
Fresnel decomposition the perpendicular component makes a more significant contribu-
tion to the image than the parallel one. Note that the intensity of a ray from a point source 
decreases as the squared distance. This was not taken into account in the experiments, 



since major attention was given to how allowance for polarization or correct calculation of 
the phase shift affect the image of interference. The user can choose a suitable version of 
these methods. 
A comparison of the images calculated with various physical correctness shows that any of 
them satisfies the requirements of photorealism in works aimed at obtaining a rich palette 
of rainbow colors.  
Let us consider Fig. 4. All numerical experiments were performed for the left scene. These 

are model experiments, and the rays coming from a source to a point P  have been accu-
rately calculated and, hence, their phases have also been accurately calculated. The prob-
lem is more complicated if we develop a renderer taking into account possible interference. 
The renderer calculates an image on some image plane consisting of pixels. Two or more 
coherent rays moving around the scene get into a certain pixel or subpixel. But a pixel is 
not a point! Nevertheless, a possible solution is to calculate interference for all coherent 
rays getting into a pixel. In our opinion, this problem was the reason for ignoring optical 
dispersion in the experiments reviewed in Section 2. In the introduction, an approach from 
[10] was discussed: tracing not with mathematical, but with "solid" rays. This solution 
would greatly increase the complexity of calculations for arbitrary scenes, and make ac-
counting for interference practically unacceptable due to high computational complexity 
even in the near future, despite the fast development of computer technology. For the same 
reason, no algorithms based on tracing with a cone, pencil, etc. instead of a mathematical 
ray have been widely used in practice. 
The right scene in Fig. 4 includes a lens which makes the calculation more difficult: optical 
dispersion, spherical aberration, etc. In fact, for this scene the problem as a whole must be 
solved. Eye observation is often simulated by using a system of lenses.  
In conclusion, it should be noted that this problem calls for a separate study, which we 
plan to do in the nearest future. 
This work was carried out under state contract with ICMMG SB RAS (0315-2019-0001). 
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